The Physiology of Plyometrics


Plyometrics refers to exercise that enables a muscle to reach maximum force in the shortest possible time. The muscle is loaded with an eccentric (lengthening) action, followed immediately by a concentric (shortening) action.
This article outlines the physiology behind how and why plyometrics works. It also examines the research that demonstrates why, as a form of power training, plyometric training is very effective.
Practical guidelines for designing a plyometric training program along with animated drills can be found in the main plyometric training section


How Plyometric Exercises Work

A muscle that is stretched before a concentric contraction, will contract more forcefully and more rapidly. A classic example is a dip" just prior to a vertical jump. By lowering the center of gravity quickly, the muscles involved in the jump are momentarily stretched producing a more powerful movement. But why does this occur? Notice the counter-movement Two models have been proposed to explain this phenomenon. The first is the
Mechanical Model
In this model, elastic energy is created in the muscles and tendons and stored as a result of a rapid stretch. This stored energy is then released when the stretch is followed immediately by a concentric muscle action. According to Hill the effect is like that of stretching a spring, which wants to return to its natural length. The spring is this case a component of the muscles and tendons called the series elastic component. The second model is the
Neurophysical Model
When a quick stretch is detected in the muscles, an involuntary, protective response occurs to prevent overstretching and injury. This response is known as the stretch reflex. The stretch reflex increases the activity in the muscles undergoing the stretch or eccentric muscle action, allowing it to act much more forcefully. The result is a powerful braking effect and the potential for a powerful concentric muscle action.
If the concentric muscle action does not occur immediately after the pre-stretch, the potential energy produced by the stretch reflex response is lost. (i.e. if there is a delay between dipping down and then jumping up, the effect of the counter-dip is lost).
It is thought that both the mechanical model (series elastic component) and the neurophysical model (stretch reflex) increase the rate of force production during plyometrics exercises.


The Stretch-Shortening Cycle

All plyometric movements involve three phases. The first phase is the pre-stretch or eccentric muscle action. Here, elastic energy is generated and stored.
The second phase is the time between the end of the pre-stretch and the start of the concentric muscle action. This brief transition period from stretching to contracting is known as the amortization phase. The shorter this phase is, the more powerful the subsequent muscle contraction will be.
The third and final phase is the actual muscle contraction. In practice, this is the movement the athlete desires the powerful jump or throw.
This sequence of three phases is called the stretch-shortening cycle. In fact, plyometrics could also be called stretch-shortening cycle exercises .


How to Increase Your Vertical Jump

One very quick and simple way to demonstrate the effect of the stretch-shortening cycle is to perform two vertical jumps. During the first vertical jump the athlete bends the knees and hips (eccentric muscle action or pre-stretch) and holds the semi-squat position for 3-5 seconds before jumping up vertically (concentric contraction) as high as possible. The 3-5 second delay increases the amortization phase.
On the second jump the athlete bends the knees and hips to the same degree but immediately jumps up without a delay. This keeps the amortization phase to a minimum and makes best use of the stored elastic energy. The second jump will be higher.